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Semianalytic solution of the Kramers exit problem for a small ferromagnetic particle

I. Klik and Y. D. Yao
Institute of Physics, Academia Sinica, Taipei 115, Taiwan

~Received 12 January 1999!

The distributionQ(t) of magnetization reversal times in a small uniaxial particle is computed here directly
from Brown’s Fokker-Planck equation. Constant applied field and axial symmetry are assumed. The Laplace

transform ofQ(t) has the formQ̂(z)5F1(z)/F2(z) where the regular functionsFi(z) are defined by a solution
of a Volterra integral equation. A separate integral equation is derived for the functiondF2(z)/dz, and the

poles and residues ofQ̂(z) may then be found numerically with arbitary precision.@S1063-651X~99!07006-3#

PACS number~s!: 05.40.Jc, 75.50.Tt, 75.60.Lr, 02.50.Ey
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I. INTRODUCTION

The Kramers exit problem@1# for a small ferromagnetic
particle was formulated by Brown@2# who wrote down the
relevant Fokker-Planck equation and calculated the ther
relaxation ratek for a uniaxial particle in external magnet
field applied parallel to its easy axis. The thermal relaxat
rate is the single parameter of the Markovian decay
W(t)5e2kt that holds@3,4# for a thermally activated exi
over an energy barrier of heightDE such thatDE@kBT,
whereT is temperature andkB is the Boltzman constant. In
this limit k}exp(2DE/kBT), and the thermal relaxation rat
is identified with the first nonzero eigenvalue@5,6# of the
Fokker-Planck equation,k52l1!2ln for n>2. At very
short timest!k21 the relaxing system is assumed to u
dergo a local equilibrization~governed by the higher eigen
values! and the exit process~governed byl1) commences
only after a local quasistationary state has been establi
@1#. The initial state of the relaxing system is irrelevant.

Deviations from exponential decay are to be expected
particular, at large biasing fields, which lower the barr
height DE. These non-Markovian processes have been
date, studied mostly by means of numerical simulations~see,
e.g., Ref.@7#!. Recently, however, Coffeyet al. @8# made use
of the fact that Brown’s Fokker-Planck equation for an a
ally symmetric system depends on only one phase-sp
variable and derived semianalytic expressions for correla
functions of a thermally relaxing uniaxial particle. Th
method of Coffeyet al. is based on a continued fraction e
pansion formalism. We proffer here an alternate treatm
based on the so-called shooting method of adjoints@9,10#,
and express the decay lawW(t) in terms of a solution of a
Volterra integral equation. A particularly simple result, d
cussed here in some detail, is obtained if backscatterin
neglected; a somewhat more complicated expression hol
backscattering is taken into account.

We assume coherent rotation of magnetization and c
sider a uniaxial particle with saturation magnetizationMs ,
anisotropy constantK, and nucleation fieldHn52K/Ms .
The particle is subject to an external magnetic fieldH ap-
plied parallel to its easy axis, and for its energy we write@2#

E5K~12x222hx!, ~1!

whereh5H/Hn is the reduced applied field,x5cosq, and
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the angleq is spanned by the easy axis and the magnet

tion vectorMW , uMW u5Ms . The corresponding Fokker-Planc
equation has the simple form@2,5,8#

]P

]t
5

]

]x
~12x2!S 2x2h1s

]

]xD P, ~2!

where the reduced temperatures5kBT/2K and the reduced
time t52hKt; h is a dissipation constant andP5P(x,t) is
the normalized probability distribution of the magnetizati
vector orientation.

II. THE REVERSAL TIMES DISTRIBUTION

For definitness we shall now assume that the applied fi
hP^0,1), so that the energy~1! has a local maximum at the
point x052h<0, and two local minima atx6561. We
further assume that at timet50 the particle is in the less
stable ‘‘down’’ state, i.e., that the initial distributionP(x,0)
is localized within the interval (21,2h). The problem is
that of finding the probability,

W1~ t !5E
21

2h

dx P~x,t !, ~3!

W1(0)51, that the particle is in the ‘‘down’’ state att.0.
Ignoring backscattering we impose on the distribution fun
tion P(x,t) the absorbing boundary conditionP(2h,t)50
and write@4#

dW1~t!

dt
5s~12h2!

]P~x,t!

]x U
x52h

5
def

2Q1~t!, ~4!

by virtue of Eq.~2!. The distribution of exit timesQ(t) is
thus fully determined by the single derivative]P/]xux52h .

We calculate the Laplace transform ofQ̂1(z), together
with its residues, using the shooting method of adjoi
@9,10#. In order to implement this method we take th
Laplace transform of the Fokker-Planck equation~2!, define
the quantities

y1~x,z!5~12x2!P̂8~x,z!, ~5!

y2~x,z!5 P̂~x,z!, ~6!
6444 ©1999 The American Physical Society
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and P̂85dP̂/dx, and write the transformed Eq.~2! as

s
d

dx S y1

y2
D 5AS y1

y2
D 2P~x,0!S 1

0D , ~7!

where the matrixA5A(x,z) is

A5S x1h z22x~x1h!112x2

s/~12x2! 0 D . ~8!

Equation~7! is to be solved with the natural boundary co
dition y1(21,z)50 and the absorbing boundary conditio
y2(2h,z)50. The other two boundary conditions, for the
yet undetermined quantitiesy1(2h,z) andy2(21,z), follow
from the identity@9#

y2~21!j2~21!2y1~2h!j1~2h!5
1

sE21

2h

dx P~x,0!j1~x!,

~9!

where the functionsj i(x,z) satisfy the adjoint equation,

s
d

dx S j1

j2
D 52ATS j1

j2
D , ~10!

and AT is the transpose of the matrixA. According to Eqs.
~4! and ~5! the quantity of interest is the functio
y1(2h,z), and in order to find it we impose on the adjoi
equation ~10! the initial conditions j1(21,z)51 and
j2(21,z)50 with which the identity~9! yields

Q̂1~z!5
1

j1~2h,z!
E

21

2h

dx P~x,0!j1~x,z!. ~11!

This simple formula, expressesing the switching times dis
bution in terms of the initial probability distributionP(x,0),
is the central result of the present paper. We note that b
the numerator and the denominator of the right-hand side

regular functions ofz so that the poles ofQ̂1(z) coincide
with the zeroes ofj1(2h,z).

According to Eq.~10! the desired functionj1(x,z) satis-
fies the Volterra integral equation,

j1~x!5e«(x)2«(21)1
e«(x)

s E
21

x

dx1

e2«(x1)

12x1
2

3E
21

x1
dx2@z22x2~x21h!112x2

2#j1~x2!,

~12!

where«(x)52(x212hx)/2s is, up to an additive constan
the reduced energyE/kBT. With our choice ofP(x,0) the
reduced height of the barrier to be overcome by thermal
tivation is DE/kBT5(12h)2/2s. Reversals in the opposit
direction are here excluded.

In order to solve Eq.~12! we divide the interval̂ 21,
2h& into N equal subintervals of lengthD5(12h)/N, de-
fine the functionj1(x) by the set ofN11 valuesj1(x(n)),
n50,1, . . . ,N, at the pointsx(n)5211nD, and seek then
these values using numerical Picard iterations@10,11#. The
i-

th
re

c-

inner intergration overx2 is easily done using the trapezoid
rule, but the outer integral overx1 has a weak~removable!
singularity atx1521, and we adopt here a piece-wise line
approximation only for the regular part of the integrand.

If the functionj1(x,z) is known, then formal differentia-
tion of Eq. ~12! with respect toz yields a weakly singular
Volterra integral equation for the function]j1(x,z)/]z that
determines, by virtue of Eq.~11!, the residues of the reversa

times distributionQ̂1(z). The functionj1(2h,z) has infi-
nitely many simple rootsz( i ) along the negative real axis o
the complexz plane, and in the vicinity of thei th root we
write j1(2h,z)'(z2z( i ))]j1(2h,z( i ))/]z.

III. DECAY LAW

Equation~11! makes it possible to study the decay of
arbitary initial state. We chose here the simple singular@12#
initial distribution P(x,0)5d(x11) for which

Q̂1(z)j1(2h,z)51. Sample plots of this functionQ̂1(z) are
shown in Figs. 1 and 2. In plotting these figures we sca
the real axis of the complexz plane, introducing the notation

r~z!5H ~zY!1/2 if z>0

2~2zY!1/2 if z<0,
~13!

and the mean first passage time,

Y5E
21

2h dx1 e«(x1)

12x1
2 E

21

x1
dx2 e2«(x2). ~14!

Within this scale the poles ofQ̂1(z) are almost equidistant.
For P(x,0)5d(x11) andj1(21,z)51 the real time exit

times distributionQ1(t) is given by the equation,

Q1~t!5(
i

S ]j1~2h,z( i )!

]z D 21

exp~tz( i )!, ~15!

and the normalization ofQ1(t) then serves as an indepe
dent check on the numerical accuracy of the computat
The probabilityW1(t) that the particle has not reversed
the timet>0 then follows, and we plot a sample family o
these curves in Fig. 3. The low-temperature exponential
cay is defined by the Markovian limit, and for this reason w
concentrate here on the opposite limit of high temperatu
and sets51. A striking feature of the shown plots is th
very slow initial decay at short times. This is characteristic
processes in which the initial distribution is negligibly sma
close to the top of the barrier; the slow initial phase of t
decay here corresponds to initial equilibrizationwithin the
well @13#. By contrast, the initial decay is faster than th
exponential limit@dashed line in Fig. 3# if at t50 there is an
appreciable probability of finding the system close to the
of the barrier~not shown!.

IV. CONCLUDING REMARKS

The right-hand side of the Fokker-Planck equation has

form of a divergence of a probability currentJW , and it is,
therefore, possible to relate the decay lawW(t) to values,
which the distribution functionP(x,t) takes on at the edge
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of a one-dimensional metastable domain. We have chose
treat here Brown’s Fokker-Planck equation because of
relation to recent experimental works@13#, but the proposed
method is equally well applicable also to the Smoluchow
equation and to its various generalizations@14#. In particular,
for an overdamped Brownian particle driven by white noi
the probability currentJ5h@V8(x)1kBT]/]x#P leads to a
very simple adjoint system whose numerical solution is
most trivial for any potentialV5V(x).

The formalism presented so far has the drawback of be
restricted to thermal decay of asingle metastable state. In
this concluding section we abandon the absorbing bound
condition P(2h,t)50 and outline the somewhat mor
elaborate treatment of the thermally relaxingbistablesystem
described by Eqs.~1! and ~2!.

In analogy to Eq.~3! we define in this case also the pro
ability

FIG. 1. The functionQ̂1(z) along the scaled@see Eq.~13!# real
axis of the complexz plane. Reduced applied fieldh50 and re-
duced temperatures51 @top, with Y'0.579] ands50.2 @bottom,

with Y'1.232]. Q̂1(0)51 by virtue of the normalizationW(0)1

51.
to
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i

,
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W2~ t !5E
2h

1

dx P~x,t !, ~16!

W1(t)1W2(t)[1, that the particle is in the ‘‘up’’ state, an
write then the modified Eq.~4! in the form,

Ẇ1~t!52Ẇ2~t!5
def

2Q1~t!

5s~12h2!P8~2h,t!, ~17!

FIG. 2. The functionQ̂1(z) along the scaled@see Eq.~13!# real
axis of the complexz plane. Reduced applied fieldh50.8 and re-
duced temperatures51; Y'0.101.

FIG. 3. The probabilityW1(t) of finding the particle in the
‘‘down’’ state ~solid lines! versus the reduced timet/Y. Reduced
applied field consecutivelyh50 ~labeled!, 0.2, 0.4, 0.6, and 0.8
~labeled!, and reduced temperatures51. The dashed line repre
sents exponential decay.
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Ẇi5dWi /dt. In place of Eq.~9! we now have@9#

y1~2h!j1
( i )~2h!1y2~2h!j2

( i )~2h!2y2~21!j2
( i )~21!

52
1

sE21

2h

dx P~x,0!j1
( i )~x!, ~18!

i 51 and 2, where the functionsj1
( i ) and j2

( i ) are two solu-
tions of the adjoint equation~10! on the interval (21,2h&.
Similarly, on the interval̂ 2h,1), there is

y2~1!j2
( i )~1!2y1~2h!j1

( i )~2h!2y2~2h!j2
( i )~2h!

52
1

sE2h

1

dx P~x,0!j1
( i )~x!, ~19!

and with a suitable choice of initial~final! conditions im-
posed on Eq.~10! the four equations~18! and~19! constitute
a linear system for the four unknownsy2(21), y1(2h),
ra

try
,

y2(2h), and y2(1). A convenient choice isjW (1)(2h)

5(1,0) andjW (2)(2h)5(0,1) for which one obtains two so
lutions of Eq.~10!, which are continuous on the entire inte
val (21,1). With this choice the poles of the Laplace tran

formed probabilitiesŴi(z) coincide with the zeroes of the
function,

D~z!5zdetS j2
(1)~21,z! j2

(1)~1,z!

j2
(2)~21,z! j2

(2)~1,z!
D , ~20!

and we note that the pole atz50 then corresponds to th
state of thermal equilibrium; in the preceding case, wh
limt→`W1(t)50 due to the absence of backscattering, t
pole canceled identically.

In summary, using the shooting method of adjoints
have reduced the one-dimensional Fokker-Planck equatio
an expression for a finite number of the discrete occupa
probabilitiesWi(t).
.
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